
Ohua-Powered, Semi-Transparent UDF’s in
the Noria Database
By Justus Adam

Supervisor: Sebastian Ertel, Dirk Habich, Malte
Schwarzkopf and Jerónimo Castrillón-Mazo

A query to start with

2
1. Eric Friedman, Peter Pawlowski, and John Cieslewicz. 2009. SQL/MapReduce: a practical approach to self-describing,

polymorphic, and parallelizable user-defined functions. Proc. VLDB Endow. 2, 2 (August 2009), 1402-1413.

uid Category Timestamp
1 1 001
1 0 005
1 2 010

Query: How many
clicks, on average, does
it take for a user to get
from the start page to
a purchase

Table layout

3. Only the non-overlapping ones

5. Average of the
count, per user

1. The table, but more than once

2. Delimiters for an ordered
sequence, if user is the same

4. The actual clicks in
between the sequence,

if user is the same

Coding it up

3

1. Rakesh Agrawal et al. 2008. The Claremont Report on Database Research. In: SIGMOD Rec. 37.3, 9–19.
2. Charles Welty and David W. Stemple. 1981. Human Factors Comparison of a Procedural and a Nonprocedural Query Language.

In: ACM Trans. Database Syst. 626– 649

uid Category Timestamp
1 1 001
1 0 005
1 2 010

Query: How many
clicks, on average, does
it take for a user to get
from the start page to
a purchase

Table layout

1. Per user

2. In sorted order

3. Begin/end sequence
or count event

4. Average for length
of closed intervals

Easier[1,2]:

Easier:

Coding it up

4
1. Eric Friedman, Peter Pawlowski, and John Cieslewicz. 2009. SQL/MapReduce: a practical approach to self-describing,

polymorphic, and parallelizable user-defined functions. Proc. VLDB Endow. 2, 2 (August 2009), 1402-1413.

uid Category Timestamp
1 1 001
1 0 005
1 2 010

Query: How many
clicks, on average, does
it take for a user to get
from the start page to
a purchase

Table layout

Imperative is more
efficient because of

the many joins in SQL

Easier:

Coding it up

5

uid Category Timestamp
1 1 001
1 0 005
1 2 010

Query: How many
clicks, on average, does
it take for a user to get
from the start page to
a purchase

Table layout

Ohua[1]

Parallelizable language
with a stateful dataflow

backend

Noria[2]

Dataflow system. Uses
materialization (state) to

improve read performance

1. Sebastian Ertel, Christof Fetzer, and Pascal Felber. Ohua: Implicit Dataflow Programming for Concurrent Systems. 2015. PPPJ ’15. 51–64
2. Jon Gjengset et al. 2018. Noria: dynamic, partially-stateful data-flow for high-performance web applications. In Proceedings of the 12th USENIX

conference on Operating Systems Design and Implementation (OSDI'18). USENIX Association, Berkeley, CA, USA, 213-231.

Dataflow!

Noria

6

Cached computations
(Incremental

Materialization)

Long write
path (slow)

Update propagation
(eventual consistency)

Short read
path (fast)

Base table

• Multicore
• Distributed
• No UDF

Support

• Simple Materialization recomputes
everything on change

• Incremental Materialization only
recomputes affected rows. Operators
must work with changes (Deltas)

Hierarchy of UDF’s

7

UDA
1n

SRF
n1

UDTF
mn

Expressiveness

O
ptim

ization

Hinders analysis
and optimization

Limits
Expressiveness

Partial order: Any UDA
can be expressed as a
UDTF but not vice versa

ST-UDF
11

UDF support in different Databases

Our target

Hierarchy of UDF’s

8

ST-UDF
11

UDA
1n

SRF
n1

UDTF
mn

Expressiveness

O
ptim

ization

Graph Fragment

UDA
π

ST-UDF
⋈

Challenges

• Incrementalizing

• Incrementalizing
• State management

• Incrementalizing
• State management
• Optimization

Difficult, but we
already know how to
do it for ST-UDF/UDA

No good, general solution yet,
but solved for ST-UDF/UDA💡 Relate back to

ST-UDF/UDA 💡

• UDF generation
• Control Flow

representation

Roadmap

9

?Incremental
Computation

State
Management

Operator
Generation

Control Flow
Representation

ST-UDF and UDA UDTF

Roadmap

10

?Incremental
Computation

State
Management

Operator
Generation

Control Flow
Representation

Work in
incremental
materialized

view

ST-UDF and UDA UDTF

Incremental computation

11

Simple Mat.

• Complete Recompute
• Easy to build
• Inefficient

Incremental Mat.

• Changes recompute
• Efficient
• Difficult to build
• Represented with

inserts and deletes

Operators must
recompute all affected

previous results (requires
tracking state) and issue
updates downstream.

ST-UDF
Relatively easy,
propagate whether input
was update or delete to
the output.

(Same for SRF)

UDA

• Only one, known affected
previous result

• State determines new value
• Must reverse changes to state

Only state needs
to be incremental

Roadmap

12

?Incremental
Computation

State
Management

Operator
Generation

Control Flow
Representation

• Selection by index
• Eviction
• Sharding

ST-UDF and UDA UDTF

UDA State Management

13

UDA
uid:1
uid:2
uid:3

uid Category Timestamp
1 start 1
1 other 5
1 end 10

uid Category Timestamp
2 start 2
2 end 55
2 other 8

∅
Evicted Entry

Materialization

UDA State

Customizable Addition

Index

Determined from
query (primary

key, group-by etc)

Cached results

UDA State Management

14

UDA
uid:1
uid:2
uid:3

uid Category Timestamp
1 start 1
1 other 5
1 end 10

uid Category Timestamp
2 start 2
2 end 55
2 other 8

∅

Materialization

UDA State

Customizable Addition

Index
Available for
processing via

lookup

Can evict UDA
state to save

memory
Sharding distributes

data over index
Reusing index

allows UDA’s to
support sharding

Roadmap

15

?Incremental
Computation

State
Management

Operator
Generation

Control Flow
Representation

• Find suitable operators
• Handle shared state
• Generate boilerplate

ST-UDF and UDA UDTF

Operator Generation

16

• Shared state means synchronization
• Complicates or prevents parallelism
• Not supported in Noria

💡 Make minimal operator with local state

Operator Core (Rust)

UDTF (Ohua)

Only operator
local state left

2. Select all
state uses

3. Recursively select
dependencies

4. Bundle into
operator

1. Select init
expression

Rest of
program

5. Add boilerplate appropriate for
type of generated UDF (not shown)

Roadmap

17

?Incremental
Computation

State
Management

Operator
Generation

Control Flow
Representation

• Representation as query
• State scoping
• Multi-arity functions

ST-UDF and UDA UDTF

Iteration Representation

18

Operators always work
on batches for efficiency
Ø No special iteration

operator needed

UDA
uid:1
uid:2
uid:3

Index

Cache +
UDA State

UDA State
already indexed

12. Slide

Number of iterations not known.
Incremental execution revisits state.
→ Cannot just duplicate operator
→ State index & dispatch needed

State must respect scope
State value only valid for

one iteration

Sequence source provides index
Found by analysing control flow context

GROUP BY

• Sequence never created
• Source streams items
• Each row tagged with index

Nesting achieved via
compound indices

Multi argument functions

19

⌃

f

| ⇤ |

R

Order of output tuples
cannot be guaranteed

Needs to line up inputs
from same iteration

There already exists an
operator that does this

⋈ (join)
⌃

./

f

| ⇤ |

R

Needs an key to join
iterations on

Scope key from
before also

associates iterations

GROUP BY

Only interesting for
multiple outputs i.e.

iteration

Also works correctly for variables
from outside the for-loop

All inputs packaged up
nicely in single row

Roadmap

20

?Incremental
Computation

State
Management

Operator
Generation

Control Flow
Representation

ST-UDF and UDA UDTF

Evaluation
• Interoperability with SQL
• Composition/Control Flow
• Optimization (Parallelization)

Evaluation – Overhead & Expressiveness

21

●

●

● ● ● ● ●

● ●

0

250000

500000

750000

500000 1000000 1500000 2000000 2500000
Number of Entries

Th
ro

ug
hp

ut
 (p

er
 s

ec
on

d)

Lang
● ohua

sql

Performance difference in query due to
extra operators inserted by compiler

Multi-argument functions and
inner-joins naturally correspond

Performance of Ohua-compiled average query in
comparison to SQL

Separate performance comparison
of generated sum and SQL sum
operators shows no difference

Evaluation - Parallelism

22

●

●

●

●
●

● ●
●

0e+00

1e+06

2e+06

3e+06

4e+06

2 4 6 8
Number of parallel shards

Th
ro

ug
hp

ut
 (p

er
 s

ec
on

d)

run
op0

run
op0

run
op0

0..3 4..7 8..11

Leveraging the parallelism is simply
setting a runtime parameter

Iteration local state
allows splitting

Data sharded by
range of hashes of

index values

Operator state split
into distinct pieces

Throughput of clickstream analysis with
increasing sharding factor

Parallel processing possible without
explicit parallel contructs

Roadmap

23

ST-UDF and UDA UDTF

Imperative QueryIncremental
Computation

State
Management

Operator
Generation

Control Flow
Representation

Evaluation
• Interoperability with SQL
• Composition/Control Flow
• Optimization (Parallelization)

• Imperative-only query
• Embedding SQL in procedural
• Recursion

Outlook – Embedding SQL

24

SQL Imperative

Dataflow

Initial goal: Embedding
Imperative in SQL

With Ohua, dataflow
becomes common base

SQL compiles to dataflow

With common
dataflow base we
can also embed

SQL in imperative
program

Created query dataflow
representation for

procedural programs

SQL involvement not
necessary: Procedural-
only query is possible

Outlook - Recursion

25

decode

Arbitrary nesting needs
recursive decoding of

inner structure

Splitable,
binary JSON

Recursive
self-call

Materialization builds a map
of resolved object keys [1]

1. Zhen Hua Liu et al. Closing the Functional and Performance Gap Between SQL and NoSQL. 2016. SIGMOD ’16. 227–238.

Roadmap

26

ST-UDF and UDA UDTF

Imperative QueryIncremental
Computation

State
Management

Operator
Generation

Control Flow
Representation

• Representation as query
• State scoping
• Multi-arity functions

• Selection by index
• Eviction
• Sharding

• Find suitable operators
• Handle shared state
• Generate boilerplate

Work in
incremental
materialized

view

Evaluation
• Interoperability with SQL
• Composition/Control Flow
• Optimization (Parallelization)

• Imperative-only query
• Embedding SQL in procedural
• Recursion

Simple Materialization

uid Category Timestamp
1 start 1
1 other 5
1 end 10
1 other 11

27

uid Click Distance
1 2

uid Click Distance
1 2

Base Table

UDF

uid Category Timestamp
1 start 1
1 other 5
1 end 10

Materialization Data Transferred

Entire Table transferred
and processed. Inefficient

and with high latency

Does no processing, hence
same materialization as

upstream

Fast reads by serving from
lookup table (materialization)

inserted

deleted

Incremental Materialization

28

uid Click Distance
1 2

sign uid Click Distance
- 1 1
+ 1 2

Base Table

UDF

sign uid Category Timestamp
+ 1 other 5
- 1 other 11

Materialization Data Transferred

Private materialization
as lookup table for

downstream operators
uid Click Distance
1 2

uid Category Timestamp
1 start 1
1 other 5
1 end 10
1 other 11

Only deltas transferred
and processed

Output are deltas and
delete outdated results

Operator must be
able to adjust the
result on delete

Sign added
to each row

Incremental ST-UDF and UDA

29

𝑥 + 3
ST-UDF

sign x
+ 1
- 1

sign x
+ 4
- 4

Revoke same
result on delete

For a 1:1 function 𝑓(𝑥) the incremental
function 𝑓′ is:

𝑓* +, 𝑥 = +, 𝑓 𝑥
𝑓* −, 𝑥 = −, 𝑓 𝑥

𝑐𝑜𝑢𝑛𝑡UDA

sign x
+ 1

sign x
- 1

sign x
+ 4
- 4

Simple materialization

uid Category Timestamp
1 start 1
1 other 5
1 end 10
1 other 3

30

uid Click Distance
1 3

sign uid Category Timestamp
+ 1 other 3

sign uid Click Distance
- 1 2
+ 1 3

INSERT (1, other, 3)
INTO ‘Base Table’;

Update Path (Insert)
Base Table

UDF

Noria Execution Model

uid Category Timestamp
1 start 1
1 other 5
1 end 10
1 other 3

31

uid Click Distance
1 2

sign uid Category Timestamp
- 1 other 5

sign uid Click Distance
- 1 3
+ 1 2

DELETE (1, other, 3)
FROM ‘Base Table’;

Update Path (Delete)
Base Table

UDF

Noria Execution Model

uid Category Timestamp
1 start 1
1 other 5
1 end 10
1 other 3

32

uid Click Distance
1 2

sign uid Category Timestamp
- 1 other 5

sign uid Click Distance
- 1 3
+ 1 2

Base Table

UDF

• On-line inserts
• On-line deletes
• Order is random

• Commutative
• Incremental
• Reversible

Operations

UDF State Design

33

Projection
𝑓 ∶ 𝑖𝑛𝑝𝑢𝑡 → 𝐴

State 𝑆

Computation
𝑐𝑜𝑚𝑝: 𝑆 → 𝑜𝑢𝑡𝑝𝑢𝑡

Defines actions
𝐴: {Start, End, Record}

Successively apply all
actions and sign to state
𝑎𝑝𝑝 ∶ ±𝐴 × 𝑆 → 𝑆

Not affected by sign

Affected by sign

𝑈𝐷𝐹: [±𝑖𝑛𝑝𝑢𝑡] → 𝑜𝑢𝑡𝑝𝑢𝑡

Interval Sequence as State

uid Category Timestamp
1 start 1
1 other 5
1 end 10
1 other 3

34

Base Table

UDF

uid Click Distance
1 3

[[5,3,10].length()].average() == 3

𝑠: [𝑙E, 𝑢E , 𝑙F, 𝑢F , 𝑙G, 𝑢G]

𝑡 ∈ 𝑇 such that

• 𝑡 ≥ K𝑙F if 𝑙F exists
𝑢E otherwise

• 𝑡 < K𝑢F if 𝑢F exists
𝑙G otherwise

Invariants
• 𝑙F or 𝑢E must exist
• 𝑢F or 𝑙G must exist

Merge intervals to maintain

Conclusions

35

UDF State
Design

Integrate into
Partial State

Ohua
Compiled UDF

Query
Elements in

the UDF

Must be
• Reversible
• Commutative

Pure Ohua Query

Conclusions

36

UDF State
Design

Integrate into
Partial State

Ohua
Compiled UDF

Query
Elements in

the UDF

To Support
• Eviction
• Lookups

Pure Ohua Query

noria::dataflow::opsnoria::dataflow::state

Manual Implementation

37

State Integration

State
Implementation

Operator
Implementation

Projection 𝑓Computation 𝑐𝑜𝑚𝑝

UDF

Operator
Integration

Iteration

noria::dataflow::opsnoria::dataflow::state

Manual Implementation

38

State Integration

State
Implementation

Operator
Implementation

Projection 𝑓Computation 𝑐𝑜𝑚𝑝

UDF

Operator
Integration

Iteration

What. A. Mess.

• >30 files touched1

• >3000 lines written1

• 3 new mayor data structures

1. For whole implementation including intermediate prototypes and test code. Approximately 50% used
exclusively for UDF.

Noria Backend
& Code Gen

Code RecombineCode SplittingUDF Source Code

Operator Compilation

39

State Integration
State

Implementation

Core Op Function
𝑐𝑜𝑚𝑝(𝑚𝑎𝑝 𝑓, 𝑑𝑎𝑡𝑎)

Projection 𝑓

Computation 𝑐𝑜𝑚𝑝

Operator
Integration

Stateful Iteration

state.rs

Noria Flow API

Noria Backend
& Code Gen

Code RecombineCode SplittingUDF Source Code

Operator Compilation

40

State Integration
State

Implementation

Core Op Function
𝑐𝑜𝑚𝑝(𝑚𝑎𝑝 𝑓, 𝑑𝑎𝑡𝑎)

Projection 𝑓

Computation 𝑐𝑜𝑚𝑝

Operator
Integration

state.rs

Noria Flow API

UDF code in one place
& platform unspecific

Stateful Iteration

Conclusions

41

UDF State
Design

Integrate into
Partial State

Ohua
Compiled UDF

Query
Elements in

the UDF

• Abstraction
• Conciseness
• Code Locality

Pure Ohua Query

UDF Compilation

42

Noria BackendCode SplittingUDF Source Coce

Signature

Grouping

Operator
...
Operator Code

Noria IR
Graph

Query
Integration

UDF Compilation

43

Noria BackendCode SplittingUDF Source Coce

Signature

Grouping

Operator
...
Operator Code

Noria IR
Graph

Query
IntegrationSQL-like operations

expressible in Ohua

No SQL necessary

Conclusions

44

UDF State
Design

Integrate into
Partial State

Ohua
Compiled UDF

Query
Elements in

the UDF

• Incremental
• Reusable
• Code Locality

Pure Ohua Query

Conclusions

45

UDF State
Design

Integrate into
Partial State

Ohua
Compiled UDF

Query
Elements in

the UDF

Must be
• Reversible
• Commutative

To Support
• Eviction
• Lookups

• Abstraction
• Conciseness
• Code Locality

• Incremental
• Reusable
• Code Locality

• Intuitive
• Flexible
• Composable
• Fast

Pure Ohua Query

Conclusions

46

UDF State
Design

Integrate into
Partial State

Ohua
Compiled UDF

Query
Elements in

the UDF

Must be
• Reversible
• Commutative

To Support
• Eviction
• Lookups

• Abstraction
• Conciseness
• Code Locality

• Incremental
• Reusable
• Code Locality

• Intuitive
• Flexible
• Composable
• Fast

Pure Ohua Query

• Additional State Patterns
• State builder Toolkit

• More Query Elements in
Ohua

• Multi-State UDF’s
• Non-SQL Datatypes

